Microwave auditory effect

The microwave auditory effect, also known as the microwave hearing effect or the Frey effect, consists of audible clicks induced by pulsed/modulated microwave frequencies. The clicks are generated directly inside the human head without the need of any receiving electronic device. The effect was first reported by persons working in the vicinity of radar transponders during World War II. These induced sounds are not audible to other people nearby. The microwave auditory effect was later discovered to be inducible with shorter-wavelength portions of the electromagnetic spectrum. During the Cold War era, the American neuroscientist Allan H. Frey studied this phenomenon and was the first to publish[1] information on the nature of the microwave auditory effect.

Dr. Don R. Justesen published "Microwaves and Behavior" in The American Psychologist (Volume 30, March 1975, Number 3).

Research by NASA in the 1970s showed that this effect occurs as a result of thermal expansion of parts of the human ear around the cochlea, even at low power density. Later, signal modulation was found to produce sounds or words that appeared to originate intracranially. It was studied for its possible use in communications. Both the United States and USSR studied its use in non-lethal weaponry.

Pulsed microwave radiation can be heard by some workers; the irradiated personnel perceive auditory sensations of clicking or buzzing. The cause is thought to be thermoelastic expansion of portions of auditory apparatus.[2] The auditory system response occurs at least from 200 MHz to at least 3 GHz. In the tests, repetition rate of 50 Hz was used, with pulse width between 10–70 microseconds. The perceived loudness was found to be linked to the peak power density instead of average power density. At 1.245 GHz, the peak power density for perception was below 80 mW/cm2. The generally accepted mechanism is rapid (but minuscule, in the range of 10−5 °C) heating of brain by each pulse, and the resulting pressure wave traveling through skull to cochlea.[3]

The existence of non-lethal weaponry that exploits the microwave auditory effect appears to have been classified "Secret NOFORN" in the USA from (at the latest) 1998, until the declassification on 6 December 2006 of "Bioeffects of Selected Non-Lethal Weaponry" in response to a FOIA request. Application of the microwave hearing technology could facilitate a private message transmission. Quoting from the above source, "Microwave hearing may be useful to provide a disruptive condition to a person not aware of the technology. Not only might it be disruptive to the sense of hearing, it could be psychologically devastating if one suddenly heard "voices within one's head".

The technology gained further public attention when a company announced in early 2008 that they were close to fielding a device called MEDUSA (Mob Excess Deterrent Using Silent Audio) based on the principle.[4]

Electroreception has also been studied in the animal world. Ritz et al., in Biophysical Journal,[5] hypothesize that transduction of the Earth's geomagnetic field is responsible for the magnetoreception systems of birds. Specifically, they propose that this transduction may take place in a class of photoreceptors known as cryptochromes.

Contents

Primary Cold War-era research in the US

The first American to publish on the microwave hearing effect was Allan H. Frey, in 1961. In his experiments, the subjects were discovered to be able to hear appropriately pulsed microwave radiation, from a distance of 100 meters from the transmitter. This was accompanied by side effects such as dizziness, headaches, and a pins and needles sensation.

Sharp and Grove developed receiverless wireless voice transmission technologies for the Advanced Research Projects Agency at Walter Reed Army Institute of Research, in 1973. In the above mentioned journal entry to The American Psychologist, Dr. Don Justesen reports that Sharp and Grove were readily able to hear, identify, and distinguish among the single-syllable words for digits between 1 and 10 . Justesen writes, "The sounds heard were not unlike those emitted by persons with artificial larynxes. Communication of more complex words and of sentences was not attempted because the averaged densities of energy required to transmit longer messages would approach the [still] current 10mW/cm² limit of safe exposure." (D.R. Justesen. "Microwaves and Behavior", Am Psychologist, 392(Mar): 391–401, 1975.)

Peaceful applications

A 1998 patent describes a device that can scare off birds from wind turbines, aircraft, and other sensitive installations by way of microwave energy pulses. Using frequencies from 1 GHz to about 40 GHz, the warning system generates pulses of milliseconds duration, which are claimed to be sensed by the birds' auditory systems. It is believed this may cause them to veer away from the protected object.[6]

See also

Notes

  1. ^ Allan H. Frey (1962). "Human auditory system response to modulated electromagnetic energy". Journal of Applied Physiology 17: 689–692. PMID 13895081. http://jap.physiology.org/content/17/4/689.abstract?sid=7c073ad2-6324-4b47-94e1-124dc0a5f154. Retrieved 21 August 2011. 
  2. ^ Levy, Barry S.; Wagner, Gregory R.; Rest, Kathleen M. (2005). Preventing occupational disease and injury. American Public Health Association. p. 428. ISBN 9780875530437. http://books.google.com/?id=pM7DNkbVyQgC&pg=PA428&dq=microwave+injury&cd=26#v=onepage&q=microwave%20injury&f=false. 
  3. ^ Kitchen, Ronald (2001-10-02). Radio frequency and microwave radiation safety handbook. Newnes. p. 60. ISBN 9780750643559. http://books.google.com/?id=u3XBfkaTQcwC&pg=PA60&dq=microwave+injury&cd=109#v=onepage&q=microwave%20injury&f=false. 
  4. ^ Hambling, David (3 July 2008). "Microwave ray gun controls crowds with noise". New Scientist. http://technology.newscientist.com/article/dn14250-microwave-ray-gun-controls-crowds-with-noise.html. 
  5. ^ Ritz, Thorsten; Salih Adem and Klaus Schulten (2000). "A model for photoreceptor-based magnetoreception in birds". Biophysical Journal 78 (2): 707–718. doi:10.1016/S0006-3495(00)76629-X. ISSN 00063495. PMC 1300674. PMID 10653784. http://www.cell.com/biophysj/abstract/S0006-3495%2800%2976629-X. 
  6. ^ Kreithen ML. Patent #5774088 “Method and system for warning birds of hazards” USPTO granted 30 June 1998

References

External links